STANDARD FORM TO VERTEX FORM BY COMPLETING THE SQUARE

In this section, you will learn how to convert the standard form of a quadratic function to vertex form by completing the square.  

The standard form a quadratic function is 

y  =  ax2 + bx + c

The vertex form a quadratic function is 

y  =  a(x - h)2 + k

Here, the vertex is (h, k).

Following are the steps to convert the standard form of a quadratic function to vertex form. 

Step 1 :

In the given quadratic function y  =  ax2 + bx + c, factor "a" from the first two terms of the quadratic expression on the right side.  

Then,

y  =  ax2 + bx + c

y  =  a(x2 + bx/a) + c 

Note :

If the coefficient of x2 is 1 (a = 1), the above process is not required. 

Step 2 :

In the result of step 1, write the "x" term as a multiple of 2. 

Examples :

6x should be written as 2(3)(x).

5x should be written as 2(x)(5/2). 

Then, the result of this step will be :

y  =  a[x2 + 2(x)(b/a)] + c

Step 3 :

Now add and subtract (b/a)2 inside the parentheses to complete the square on the left side.  

Then, 

y  =  a[x2 + 2(x)(b/a) + (b/a)2 - (b/a)2] + c

Step 4 :

In the result of step 3, if we use the algebraic identity

(a + b)2  =  a2 + 2ab + b2

inside the parentheses, we get 

y  =  a[(x + b/a)2 - (b/a)2] + c

Simplify.

y  =  a[(x + b/a)2 - b2/a2] + c

y  =  a(x + b/a)2 - b2/a + c

y  =  a(x + b/a)2 - b2/a + ac/a

y  =  a(x + b/a)2 + (ac - b2)/a

The above quadratic is in the form of 

y  =  a(x - h)+ k

Here, the vertex is (h, k). 

Examples 1-2 :Convert the equation of the parabola from standard form to vertex form and sketch the parabola.

Example 1 :

y  =  x2 - 4x + 3

Solution :

Step 1 :

In the quadratic function given, the coefficient of x2 is 1. So, we can skip step 1. 

Step 2 :

In the quadratic function y  =  x2 - 4x + 3, write the "x" term as a multiple of 2. 

Then, 

y  =  x2 - 2(x)(2) + 3

Step 3 :

Now add and subtract 22 on the right side to complete the square.  

Then, 

y  =  x2 - 2(x)(2) + 22 - 22 + 3

y  =  x2 - 2(x)(2) + 22 - 4 + 3

y  =  x2 - 2(x)(2) + 22 - 1

Step 4 :

In the result of step 3, if we use the algebraic identity

(a - b)2  =  a2 - 2ab + b2

on the right side, we get

y  =  (x - 2)2 - 1

The quadratic function above is in vertex form. 

Comparing 

y  =  (x - 2)2 - 1

and

y  =  a(x - h)2 + k,

the vertex is

(h, k)  =  (2, -1)

and

a  =  1

Graph of the Parabola :

The vertex of the parabola is (2, -1). Because the sign of a is positive the parabola opens upward.

Example 2 :

y  =  2x2 - 8x + 9

Solution :

Step 1 :

In the quadratic function given, the coefficient of x2 is 2. So, factor "2" from the first two terms of the quadratic expression on the right side.

y  =  2(x2 - 4x) + 9

Step 2 :

In the quadratic function y  =  2(x2 - 4x) + 9, write the "x" term as a multiple of 2. 

Then, 

y  =  2[x2 - 2(x)(2)] + 9

Step 3 :

Now add and subtract 22 inside the parentheses to complete the square. 

Then, 

y  =  2[x2 - 2(x)(2)+ 22 - 22] + 9

y  =  2[x2 - 2(x)(2)+ 22 - 4] + 9

Step 4 :

In the result of step 3, if we use the algebraic identity

(a - b)2  =  a2 - 2ab + b2

inside the parentheses, we get

y  =  2[(x - 2)2 - 4] + 9

y  =  2(x - 2)2 - 8 + 9

y  =  2(x - 2)2 + 1

The quadratic function above is in vertex form. 

Comparing 

y  =  2(x - 2)2 + 1

and

y  =  a(x - h)2 + k,

the vertex is

(h, k)  =  (2, 1)

and

a  =  2

Graph of the Parabola :

The vertex of the parabola is (2, 1). Because the sign of a is positive the parabola opens upward.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Trigonometry Sum and Difference Identities

    May 07, 24 09:17 AM

    trigonometricratiosofspecificangles9.png
    Trigonometry Sum and Difference Identities - Concept - Solved Problems

    Read More

  2. Trigonometry Even and Odd Iidentities

    May 05, 24 12:25 AM

    ASTCnew.png
    Trigonometry Even and Odd Iidentities

    Read More

  3. SOHCAHTOA Worksheet

    May 03, 24 08:50 PM

    sohcahtoa39
    SOHCAHTOA Worksheet

    Read More