EXPONENTS AND LOGARITHMS WORKSHEET

Problem 1 : 

Solve for y :

3x2 ⋅ 2x3 = 6xy

Problem 2 :

If x2 = y3 and x3z = y9, then solve for z. 

Problem 3 :

Solve for x :

4x - 3 ⋅ 2x+2 + 25 = 0

Problem 4 :

If 2x = 3y = 6-z, then find the value of

¹⁄ₓ + ¹⁄y + ¹⁄z

Problem 5 :

Given that ax = by = cz and b2 = ac. Solve for y in terms of x and z.

Problem 6 :

Solve for x :

log2x - log25 = 2 + log23

Problem 7 :

If logx + logy = log(x + y), solve for y in terms of x.

Problem 8 :

Solve for x

(lnx)2 - (ln2)(lnx) < 2(ln2)2

Problem 9 :

Solve for x :

log2x + log4x = log0.25√6

Problem 10 :

Given that :

Find tghe value of p in terms of q

Answers

1. Answer :

3x2 ⋅ 2x3 = 6xy

(3 ⋅ 2)(x⋅ x3) = 6xy

(6)(x2+3) = 6xy

6x5 = 6xy

Divide each side by 6. 

x5 = xy

Using laws of exponents, we have

5 = y

2. Answer :

Given : x2 = y3 and x3z = y9.

x3z = y9

x3z = y⋅ 3

x3z = (y3)3

Substitute y= x2.

x3z = (x2)3

x3z = x6

3z = 6

Divide each side by 3.

z = 2

3. Answer :

4x - 3 ⋅ 2x+2 + 25 = 0 

(22)- 3 ⋅ 2⋅ 22 + 32 = 0 

(2x)- 3 ⋅ 2⋅ 4 + 32 = 0

(2x)- 12 ⋅ 2x + 32 = 0

Let y = 2x.

y2 - 12y + 32 = 0

Solve by factoring.

y2 - 8y - 4y + 32 = 0

y(y - 8) - 4(y - 8) = 0

(y - 8)(y - 4) = 0 

y - 8 = 0  or  y - 4 = 0 

y = 8  or  y = 4

Substitute 2x for y.

2x = 8  or  2x = 4 

2x = 23  or  2x = 22 

x = 3  or  x = 2

4. Answer :

Let 2x = 3y = 6-z = k.

Then we have

2x = k ----> 2 = k1/x

3y = k ----> 3 = k1/y

6-z = k ----> 6 = k-1/z

Now, we have

⋅ 3 = 6

k1/x ⋅ k1/y = k-1/z

Using laws of exponents, we have

k1/x + 1/y = k-1/z

¹⁄ₓ + ¹⁄y = -¹⁄z

Add ¹⁄to both sides. 

¹⁄ₓ + ¹⁄y + ¹⁄z = 0

5. Answer :

Let ax = by = c= k.

Then we have

b2 = ac

ax = k ----> a = k1/x

by = k ----> b = k1/y

cz = k ----> c = k1/z

Given : b2 = ac.

(k1/y)2 = k1/x ⋅ k1/z

k2/y ⋅ k1/x +1/z

6. Answer :

log2x - log25 = 2 + log23

log2x - log25 = 2(1) + log23

log2x - log25 = 2log22 + log23

log2x - log25 = log222 + log23

log2x - log25 = log24 + log23

Use the quotient rule and prule of logarithms.

log2(ˣ⁄₅) = log2(4 ⋅ 3)

log2(ˣ⁄₅) = log2(12)

If two logarithms are equal with the same base, then arguments can be equated.

ˣ⁄₅ = 12

Multiply each side by 5.

x = 60

7. Answer :

logx + logy = log(x + y)

Using the product rule of logarithms,

log(xy) = log(x + y)

xy = x + y

Subtract y from both sides.

xy - y = x

y(x - 1) = x

y = ˣ⁄₍ₓ ₋ ₁₎

8. Answer :

(lnx)2 - (ln2)(lnx) < 2(ln2)2

Let y = lnx. 

y2 - (ln2)y < 2(ln2)2

Subtract 2(ln2)2 from each side.

y2 - (ln2)y - 2(ln2)2 < 0

Factor.

logarithm5.png

y2 - 2(ln2)y + (ln2)y - 2(ln2)2 < 0

y[y - 2(ln2)] + (ln2)[y - 2(ln2)] < 0

[y - 2(ln2)][y + (ln2)] < 0 ----(1)

Assume, [y - 2(ln2)][y + (ln2)] = 0 and solve for y.

[y - 2(ln2)][y + (ln2)] = 0

y - 2(ln2) = 0

y = 2(ln2)

y + (ln2) = 0

y = -ln2

Mark -ln2 and 2(ln2) on the real number line.

logarithm6.png

We can have the following intervals from the above real number line.

(-∞, -ln2), (-ln2, 2ln2), (2ln2, +∞)

In the above three intervals, only the interval (-ln2, 2ln2) satisfies the inequality (1).

-ln2 < y < 2ln2

Substitute lnx for y.

-ln2 < lnx < 2ln2

ln2-1 < lnx < ln22

ln(1/2) < lnx < ln4

1/2 < x < 4

9. Answer :

10. Answer :

Multiply both sides by 8.

p2 + 4pq + 4q2 = 8pq

Subtract 8pq from both sides.

p2 - 4pq + 4q2 = 0

p2 - 2(p)(2q) + (2q)2 = 0

(p - 2q)= 0

p - 2q = 0

Add 2q to both sides.

p = 2q

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. How to Convert Between Polar and Rectangular Coordinates

    May 31, 24 08:11 PM

    How to Convert Between Polar and Rectangular Coordinates

    Read More

  2. How to Convert Between Polar and Rectangular Equations

    May 31, 24 08:05 PM

    How to Convert Between Polar and Rectangular Equations

    Read More

  3. SAT Math Videos (Part 2 - No Calculator)

    May 25, 24 05:35 AM

    sattriangle8.png
    SAT Math Videos (Part 2 - No Calculator)

    Read More